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  Abstract - My research paper  is based on the recent work in interior-point methods, specifically those methods that keep track of 
both the primal and dual optimization variables (hence primal-dual methods). These methods are special because they are 
numerically stable under a wide range of conditions, so they should work well for many different types of constrained optimization 
problems.However, you can always find a constrained optimization problem that is difficult enough to break these methods. 
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1.Introduction 
 

Optimization is the mathematical discipline which is 

concerned with finding the maxima and minima of 

functions, possibly subject to constraints. It helps in 

various field such as Architecture, Nutrition, Electrical 

circuits, Economics , Transportation,etc. 

 
 
2.Types of Optimization 

a)A real function of n variables 

 

 

 

with or without constrains 

 

 

b)Unconstrained optimization 

 

 

 

c) Optimization with constraints 
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3.Graphical Minima 
 
 
 
a)To find the minimum of the function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What is special about a local max or a local min of a 
function f (x)? 
   at local max or local min f’(x)=0  
   f”(x) > 0 if local min 
   f”(x) < 0 if local max 
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4.Convex Function 
 
 
a)Definition 
 

The weighted mean of function evaluated at any two points 

is greater than or equal to the function evaluated at the 

weighted mean of the two points 
 
 
 
 
 
 
 
 
 
 
 
b)Procedure 

 

a)Pick any two points x, y and evaluate along the function, 

f(x), f(y) 

b)Draw the line passing through the two points f(x) and f(y) 

c)Convex if function evaluated on any point along the line 

between x and y is below the line between f(x) and f(y) 

 
c)Graph 
 
 
 
 
 
 
 

d)Examples 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Convex 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Not Convex 
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5.Local Optima is Global (simple proof) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Convex vs. Non-convex  
 

Convex 
 
 
 
 
 
 
 

  Not Convex 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Functions  
 

Convex 

 

A function is called convex (strictly convex) if      is 

replaced by     (<). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Concave 

 

A function is called concave over a given region R if: 

 

 

 

The function is strictly concave if       is replaced by >.  
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8.Convex Hull 
 

A set C is convex if every point on the line segment 

connecting x and y is in C.  

 

The convex hull for a set of points X is the minimal 

convex set containing X.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For a multivariate function f(x) the conditions are:- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9.Test for Convexity and Concavity 
 

H is -ve def (-ve semi def) iff  

 

 

 

 

 

Convenient tests: H(x) is strictly convex (+ve def) 

(convex) (+ve semi def)) if: 

 

  

If     then  is concave.

If     then  is convex.
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f(x)              h(x) Hessian 

Matrix 

x Hx x 0T    0 0    ( ), .
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10.Convex Region 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A convex set of points exist if for any two points,  xa 

and xb, in a region, all points: 

 

 

 

 

on the straight line joining xa and xb are in the set. 

If a region is completely bounded by concave functions 

then the functions form a convex region. 

 
 
 
 
 
 
 
 
 
 
 

xa 

xb 

convex 

region 

xa 

xb 

non convex 

region 

x x x      a b( ) ,1 0 1  
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11.Solving Techniques 
 

Can use definition (prove holds) to prove 

If function restricted to any line is convex, function is 

convex 

If  2X differentiable, show hessian >= 0 

Often easier to: 

Convert to a known convex OP 

E.g. QP, LP, SOCP, SDP, often of a more general form 

Combine  known convex functions (building blocks) using 

operations that preserve convexity 

Similar idea to building kernels 

 

 
12. Some common convex OPs 
 

 Of particular interest for this book and chapter:  

linear programming (LP) and quadratic programming (QP) 

LP: affine objective function, affine constraints 

 

 

 

 

 

 

 

-e.g. LP SVM, portfolio management 

 

 
13.LP  Visualization 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

Note: constraints form feasible set 

-for LP, polyhedra 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.Quadratic Program 

 

QP: Quadratic objective, affine constraints 

 

 

LP is special case 

Many SVM problems result in QP, regression 

If constraint functions quadratic, then 

Quadratically Constrained Quadratic Program 

(QCQP) 

 
 
 
 
 
 
 
 
15.QP Visualization 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16.Interior Point Method 
 
 

Solve a series of equality constrained problems 

with Newton’s method  

Approximate constraints with log-barrier (approx. 

of indicator) 
 
 
 
 
 
 
 
As t gets larger, approximation becomes better 
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17.CVX: Convex Optimization  
 
 

a)Introduction 

 

CVX is a Matlab toolbox 

Allows you to flexibly express convex optimization 

problems 

Translates these to a general form and uses efficient 

solver (SOCP, SDP, or a series of these) 

 

 

All you have to do is design the convex optimization 

problem 

Plug into CVX, a first version of algorithm implemented 

More specialized solver may be necessary for some 

applications 
 
 

b)CVX - Examples 
 

I) 

Quadratic program: given H, f, A, and b 

cvx_begin 

variable  x(n) 

                minimize (x’*H*x + f’*x) 

subject to 

                 A*x  >= b 

cvx_end 

 
II) 
 

SVM-type formulation with L1 norm 

cvx_begin 

   variable w(p) 

   variable b(1) 

   variable e(n) 

   expression by(n) 

   by = train_label.*b; 

   minimize( w'*(L + I)*w + C*sum(e)  + 

l1_lambda*norm(w,1) ) 

   subject to 

 X*w + by >= a - e; 

 e >= ec; 

cvx_end 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18.Building Convex Functions 
 
 

From simple convex functions to complex: some operations that 

preserve complexity 

Nonnegative weighted sum 

Composition with affine function 

Pointwise maximum and supremum 

Composition 

Minimization 

Perspective   ( g(x,t) = tf(x/t) ) 
 
19.Verifying Convexity Remarks 
 
 

For more detail and expansion, consult the referenced 

text, Convex Optimization 

Geometric Programs also convex, can be handled with 

a series of SDPs (skipped details here) 

CVX converts the problem either to SOCP or SDM (or a 

series of) and uses efficient solver 
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